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The most studied extension of the standard SU(2) � U(1) electroweak gauge model

is that of supersymmetry with the smallest necessary particle content. In this Minimal

Supersymmetric Standard Model (MSSM), there are two scalar doublets �1 = (�+1 ; �
0
1) and

�2 = (�+2 ; �
0
2), with Yukawa interactions (u; d)LdR�1 and (u; d)LuR

~�2, respectively, where

~�2 = i�2��2 = (�02;���2 ). The Higgs sector of the MSSM has been studied in great detail[1]

and it is a current topic of intensive experimental and theoretical scrutiny.[2] There are �ve

physical Higgs bosons in the MSSM: two neutral scalars (h and H), one neutral pseudoscalar

(A), and two charged ones (h�). Their masses and couplings to other particles are completely

determined up to two unknown parameters which are often taken to bemA and tan � � v2=v1,

where vi is the vacuum expectation value of �0i .

In the following, we will show that mA > 60 GeV for all values of tan�. Our conclusion

is based on a combination of theoretical and experimental inputs from a number of di�erent

observations which have become available recently.

In the MSSM, the pseudoscalar Higgs boson A and the charged Higgs bosons h� are

given by analogous expressions, namely

A =
p
2(sin�Im�01 � cos �Im�02); (1)

h� = sin���1 � cos���2 : (2)

At tree level, their masses are related by m2
h� = m2

A + M2
W . The mass-squared matrix

spanning the two neutral scalar Higgs bosons
p
2Re�01;2 is given by

M2 =

2
4 m2

A sin
2 � +M2

Z cos
2 � �(m2

A +M2
Z) sin� cos�

�(m2
A +M2

Z) sin� cos� m2
A cos

2 � +M2
Z sin

2 � + �= sin2 �

3
5 : (3)

In the above, � is the leading radiative correction[6] due to the t quark:

� =
3g22m

4
t

8�2M2
W

ln

 
1 +

~m2

m2
t

!
; (4)

where ~m is the mass parameter for the supersymmetric scalar quarks.
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Let us take mA = 0 and rotateM2 to the basis spanned by

h1 =
p
2(sin�Re�01 � cos �Re�02); h2 =

p
2(cos �Re�01 + sin �Re�02): (5)

We get[3]

M2 =

2
4 M2

Z sin
2 2� + � cot2 � �M2

Z sin 2� cos 2� + � cot�

�M2
Z sin 2� cos 2� + � cot� M2

Z cos
2 2� + �

3
5 : (6)

It is well-known that in this basis, the h1ZZ and h2AZ couplings are absent, hence the

nonobservation of e+e� ! h+A does not rule out any value of mA if tan � is small enough[4].

In this limit, the eigenstates ofM2 are essentially h1 and h2. If h ' h1, then it is too heavy

to be produced. If h ' h2, then its coupling to A is too small to have a measurable branching

fraction. Note that � 'M2
Z, i.e. (91 GeV)

2, for mt = 175 GeV and ~m = 1 TeV.

From the nonobservation of e+e� ! h + Z where the Z boson may be either real or

virtual and the nonobservation of e+e� ! h+A, where h is an arbitrary linear combination

of h1 and h2, it is possible to obtain the MSSM exclusion region in the mA � tan � plane.

One such detailed analysis[5] using only LEP1 data collected at the Z resonance shows that

mA has to be greater than about MZ=2 for tan � > 1. With the higher energies available at

LEP2 since then, this bound is expected to be at least 60 GeV.

To obtain a lower bound on mA for tan � < 1, we propose to use the MSSM relationship[6]

m2
h� = m2

A +M2
W �

�

4 sin2 �

M2
W

m2
t

; (7)

where the last term is the leading radiative correction for tan � < 1. We then derive bounds

on mA from the bounds on mh� by considering t decay. Taking mt = 175 GeV, we see that

t ! b + h+ is allowed for values of mh� up to 170 GeV, corresponding to mA up to about

150 GeV. The nonobservation of the above process would then translate into lower bounds

on mA as a function of tan �.
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In the MSSM, the charged-Higgs-boson couplings to the quarks and leptons are given by

Hint =
�g2p
2MW

h+[cot� mui
�uidiL + tan � mdi�uidiR + tan � mli��iliR] + h:c:; (8)

where the subscript i represents the generation index, and we have used the diagonal KM

matrix approximation[7]. The leading-logarithm QCD (quantum chromodynamics) correc-

tion is taken into account by substituting the quark mass parameters by their running masses

evaluated at the h� mass scale. The resulting decay widths are

�(t! bh+) =
g22�

1=2(1;m2
b=m

2
t ;m

2
h+=m

2
t )

64�M2
Wmt

[(m2
t cot

2 �+m2
b tan

2 �)(m2
t+m2

b�m2
h+)�4m2

tm
2
b];

(9)

where � denotes the usual Kallen function and �1=2 is equal to the magnitude of the momen-

tum of either decay product divided by mt=2, and

�(h+ ! �+�) =
g22mh+

32�M2
W

m2
� tan

2 �; (10)

�(h+ ! c�s) =
3g22mh+

32�M2
W

(m2
c cot

2 � +m2
s tan

2 �): (11)

Assuming that the only other competing channel is the standard-model decay t! bW+, the

t! bh+ branching fraction is then

B =
�(t! bh+)

�(t! bh+) + �(t! bW+)
; (12)

where

�(t! bW+) =
g22�

1=2(1;m2
b=m

2
t ;M

2
W=m2

t )

64�M2
Wmt

[M2
W (m2

t +m2
b) + (m2

t �m2
b)

2 � 2M4
W ]: (13)

It is clear from Eq. (9) that B has a minimum at tan� = (mt=mb)1=2 ' 6, but it becomes

large for tan � < 1 and tan � > mt=mb. Thus we expect to see a sizeable t! bh+ signal in

these two regions if mh+ < mt.

We see from Eqs. (10) and (11) that �+� is the dominant decay mode of h+ if tan � >> 1.

Thus an excess of t�t events in the � channel compared to the standard-model prediction
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constitutes a viable h� signal in the large tan � region. A recent analysis[8] of the CDF t�t

data in the � l channel (l = e; �) has led to a mass bound of mh� > 100 GeV for tan � > 40.

A similar bound has also been obtained from the same t�t data in the inclusive � channel[9].

The above method is not applicable in the small tan � region, where h+ is expected to

decay mainly into c�s, i.e. two jets. On the other hand, we can use the so-called disappearance

method to look for the presence of t! bh+ decay in both the small and large tan � regions[7]

as described below. The key observation is that h� couples negligibly to the light fermions,

particularly e and �, whereas the W boson couples to them with full strength universally.

Since the e and � decay modes play an important role in the detection of t�t events at the

Tevatron, the experimentally derived t�t cross section is sensitive to the branching fraction

B of Eq. (12). After all, if t decays into bh+, there would not be any energetic e or � in the

�nal state, as would be possible with the W boson.

The experimental t�t cross sections obtained by the CDF and D0 collaborations[10, 11]

are weighted averages of their measured cross sections in the (I) dilepton (ll) and (II) lepton

plus multijet (lj) channels, using the standard formula

� =
�(�i=�2i )

�(1=�2i )
: (14)

They are summarized below.

CDF : �ll = 8:5
+4:4

�3:4 pb; �lj = 7:2
+2:1

�1:7 pb ) �CDF = 7:5
+1:9

�1:6 pb: (15)

D0 : �ll = 6:3� 3:3 pb; �lj = 5:1� 1:9 pb ) �D0 = 5:5 � 1:8 pb: (16)

The �lj of CDF is a weighted average of the measured cross sections using the SVX and SLT

b-tagging methods; that of D0 is a weighted average of those using kinematic cuts and SLT

b-tagging. In both cases, the weight of the SLT method is rather low. From Eqs. (15) and

(16), we see that for both CDF and D0, �lj ' �ll=2, hence

� ' �ll + 4�lj
5

: (17)
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Furthermore, since the CDF and D0 cross sections have essentially identical errors, we can

take a simple average of the two:

�CDF+D0 = 6:5
+1:3

�1:2 pb: (18)

Here we have combined the two errors using ��2 = ��21 +��22 , since they are largely statistical.

We note that the dilepton channel (I) corresponds to the leptonic (e; �) decay of both the t

and �t quarks, whereas the lepton plus multijet channel (II) corresponds to the leptonic decay

of one, say t! bl+�, and the hadronic decay of the other. For the standard-model decay t!
bW+, the respective branching fractions are 2/9 and 2/3, whereas for the postulated decay

t! bh+, they are 0 and a function which rises rapidly to 1 for tan � < 1. Thus the relative

contributions of di�erent �nal states to the two channels are WW : Wh� : h�h� = 1 : 0 : 0

for (ll) and 1 : 3=4 : 0 for (lj). [We have used the maximum value of 3/4 corresponding to

very small tan�. This is a conservative approach, because any smaller value will give us a

better bound on mh� as explained below.] We have then a suppression factor relative to the

standard model of

fll = (1 �B)2 ' 0:5 (for B = 0:3); (19)

flj = (1�B)2 + 2B(1 �B)(3=4) ' 0:8 (for B = 0:3): (20)

Since the relative weights of the (ll) and (lj) channels are 1:4, Eqs. (19) and (20) correspond

to an e�ective suppression factor of

f = 0:74 (for B = 0:3): (21)

We note that for large tan �, h� decays mainly into � , hence it would be hard for the Wh�

�nal state to pass the njet � 3 cut required for the (lj) channel. This implies an extra

suppression factor of about 1/3 for the Wh� contribution, hence f is about 0.7 already for

B = 0:2, i.e. our bound is conservative because it assumes B = 0:3.
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Finally the theoretical estimates of the t�t cross section including higher-order QCD cor-

rections are 4.13 to 5.48 pb[12], and 5.10 to 5.59 pb[13]. These ranges are not identical,

but the two estimates are in reasonable agreement as to their upper bounds. We shall thus

assume for our purpose that

�(t�t) � 5:6 pb: (22)

Combining this with the suppression factor of Eq. (21), we obtain an upper bound of

� � 4:1 pb (23)

for the weighted cross section of Eq. (17). This is 2� lower than the combined CDF and D0

estimate of Eq. (18), as well as the CDF estimate of Eq. (15). Hence we can take B = 0:3

as a 2� upper bound for the branching fraction of t ! bh+ decay. In Figure 1 we plot the

exclusion regions of mh� as a function of tan � using B = 0:3. We also show the exclusion

region obtained in Ref. [8], which used the \appearance" method of looking for � , instead of

the \disappearance" method of not �nding e or � discussed here.

To convert a bound on mh� to one onmA, we use the full expression including all one-loop

radiative corrections[6] in place of Eq. (7) which is approximate and valid only for tan � < 1.

In Figure 2 we plot the exclusion regions of mA as a function of tan � deduced from t decay

and t�t production corresponding to Fig. 1. We note that the radiative correction is negative

for small tan � which increases the mA bound, and is positive for large tan � which decreases

it. We note also that at extreme values of tan �, near 0.2 and 100, the Yukawa couplings

involved are becoming too large for a perturbative calculation to be reliable. We then add

a line at mA = 60 GeV for tan� > 1 as a conservative upper limit from the combined LEP

data[5, 14]. Our conclusion is simple: in the Minimal Supersymmetric Standard Model,

combining what we know from LEP and the Tevatron and using a conservative estimate of

the theoretical t�t cross section, the pseudoscalar mass mA is now known to be greater than

60 GeV for all values of tan �.
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Note Added: After the completion of our paper, we found out that the ALEPH Collabo-

ration has just recently obtained[15] the bound mA > 62:5 GeV for tan � > 1.
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Figure Captions

Fig. 1. Exclusion regions at 95% con�dence level in the mh� � tan � plane using B = 0:3

(solid lines) for t! bh+ as explained in the text. The dashed line corresponds to the method

used in Ref. [8].

Fig. 2. Exclusion regions at 95% con�dence level in the mA� tan� plane. Regions I and III

correspond to those depicted in Fig. 1 with mh� converted to mA taking into account the

MSSM one-loop radiative corrections. Region II represents a conservative estimate of the

expected limit from LEP1 and LEP2 for tan � > 1 (dotted line). A slightly higher value of

62.5 GeV for tan � > 1 has just recently been obtained by the ALEPH Collaboration[15].
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